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Abstract. A method for computing the coefficients of a second order
digital biquadratic filter is presented, matching as close as possible the
characteristics of the analog prototype. By finding the coefficients of a
first order system, an information can be retrieved to solve the second
order system. A general form solution is obtained, where only elementary
functions are used and where the cutoff frequency can tend to infinity.

1. INTRODUCTION

When mapping from the analog domain to the digital domain, traditional
methods like the bilinear transform are very popular due to their ease of directly
replacing the variables. Unfortunately, they suffer from bad matching at high
cutoff frequency and from cramping at Nyquist. Other methods try to solve
the magnitude matching and the cramping, but often involve system dependant
computation methods, complicated arithmetics and neglet the phase response.
The goal of this paper is to come up with a simple and accurate solution for any
given system, and simple solutions always come from a simple development. In
Section 2.1, by knowing the location of the zeros of a discrete high pass filter,
we can easily solve its first order form. In Section 3.1, we then do the same for
its second order form while using a precious information appearing in the first
order solution. For finding the coefficients, only systems of polynomial equations
of degree not higher than two were used, resulting in elegant formulæ. Unlike
other methods, the cutoff frequency is not bounded by the sampling frequency.
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2. FIRST ORDER FILTER

2.1. HIGH PASS

A first order analog high pass filter, with cutoff frequency 𝑓𝑐, has a magnitude
response

Γ(𝑥) = 1

√(
𝑓𝑐
𝑥 )

2
+ 1

(2.1)

A digital bilinear filter, with sampling frequency 𝑓𝑠, has a discrete transfer function

𝐻(𝑧) = 𝑎0 +𝑎1𝑧
−1

𝑏0 +𝑏1𝑧−1
= 𝐴1+𝛼𝑧

−1

1 + 𝛽𝑧−1 (2.2)

with a magnitude response

Ω(𝑥) = 𝐴
√
√√
√√𝛼2 + 2𝛼cos(2𝜋𝑥𝑓𝑠 ) + 1

𝛽2 + 2𝛽cos(2𝜋𝑥𝑓𝑠 ) + 1
(2.3)

We introduce 𝜔≔ 𝑓𝑠/𝑓𝑐. The first two conditions to match the analog
prototype are:

1. same gain at 𝑥 = 0,
2. same slope at 𝑥 = 0.

‖‖
‖‖
‖‖
‖ d0
d𝑥0Ω(𝑥 = 0) =

! d0
d𝑥0Γ(𝑥 = 0)

d1
d𝑥1Ω(𝑥 = 0) =

! d1
d𝑥1Γ(𝑥 = 0)

⟹
‖‖
‖‖
‖𝛼 = −1
𝐴 = (1+ 𝛽) 𝜔2𝜋

(2.4)

To find 𝛽, we want a gain match at 𝑓𝑠/𝜎, where 𝜎 is a constant.

Ω(𝑓𝑠2 ) =
!
Γ(𝑓𝑠𝜎)

⟹ 𝛽 = 𝜋−𝜈𝜋+𝜈, 𝜈 ≔ √𝜔2 +𝜎2
(2.5)

2.2. FURTHER FILTER TYPES

Let

𝜑(𝑥) = 𝜋−√𝑥
2 +𝜎2

𝜋+√𝑥2 +𝜎2
(2.6)
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with

lim
𝑥→0

𝜑(𝑥) = 𝜋−𝜎𝜋+𝜎
lim
𝑥→∞

𝜑(𝑥) = −1
(2.7)

Different first order filters can be created in the form

𝐻(𝑧) = 𝐺 ⋅ (1+ 𝛽)(1+𝛼𝑧
−1

1 + 𝛽𝑧−1) (2.8)

with the following coefficients:

Table 2.1
First order coefficients for various systems.

𝜶 𝜷 𝑮

High Pass 𝜑(∞) 𝜑(𝜔)
𝜔
2𝜋

Low Pass 𝜑(0) 𝜑(𝜔) 1
1 +𝛼

High Shelf 𝜑(𝜔𝑔1/2) 𝜑(𝜔𝑔−1/2) 1
1 +𝛼

Low Shelf 𝜑(𝜔𝑔−1/2) 𝜑(𝜔𝑔1/2)
𝑔

1+𝛼

All Pass 𝜑(𝜔)−1 𝜑(𝜔) 1
1+𝛼

The frequency mapping of 𝐻(𝑧) is

𝜓(𝜔) = 𝑓𝑠
2𝜋 arccos(

𝜔2 −𝜎2 −𝜋2

𝜔2 −𝜎2 +𝜋2) (2.9)

and its inverse mapping is

𝜓−1(𝜔) = 𝑓𝑠

√𝜋
2 cot2(𝜋𝜔) +𝜎2

(2.10)

As shown in Figure 2.1, the best match of the magnitude response is achieved
when 𝜎 ∈ [2,√2/3𝜋]. This is the interval where 𝜓(𝜔) intersects 𝑓𝑐. The best
match of the phase response is achieved when 𝜎 = 0.
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 𝜎 = 0 (All Pass) 𝜎 = 2 𝜎 = √2/3𝜋 analog

Figure 2.1. Different first order filters with 𝑓𝑐 = [1000; 3300; 10000; 20000; 40000]Hz,
𝑓𝑠 = 44100Hz, 𝑔 = 10dB.
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3. SECOND ORDER FILTER

3.1. HIGH PASS

A second order analog high pass filter, with damping ratio 𝜁, has a magnitude
response

Γ(𝑥) = 1

√(
𝑓𝑐
𝑥 )

4
+ 2(𝑓𝑐𝑥 )

2
(2𝜁2 − 1)+ 1

(3.1)

A digital biquadratic filter has a discrete transfer function

𝐻(𝑧) = 𝑎0 +𝑎1𝑧
−1 +𝑎2𝑧−2

𝑏0 +𝑏1𝑧−1 +𝑏2𝑧−2
= 𝐴1+𝛼1𝑧

−1 +𝛼2𝑧−2

1 + 𝛽1𝑧−1 +𝛽2𝑧−2
(3.2)

with a magnitude response

Ω(𝑥) = 𝐴
√
√√
√√4𝛼2 cos2(2𝜋𝑥𝑓𝑠 ) + 2𝛼1(𝛼2 + 1)cos(

2𝜋𝑥
𝑓𝑠 ) +𝛼

2
1 + (𝛼2 − 1)2

4𝛽2 cos2(2𝜋𝑥𝑓𝑠 ) + 2𝛽1(𝛽2 + 1)cos(
2𝜋𝑥
𝑓𝑠 ) + 𝛽

2
1 + (𝛽2 − 1)2

(3.3)

We want the gain, slope and concavity to match the analog prototype at 𝑥 = 0,
giving us the system of equation

‖‖
‖‖
‖‖
‖‖
‖‖
‖ d0
d𝑥0Ω(𝑥 = 0) =

! d0
d𝑥0Γ(𝑥 = 0)

d1
d𝑥1Ω(𝑥 = 0) =

! d1
d𝑥1Γ(𝑥 = 0)

d2
d𝑥2Ω(𝑥 = 0) =

! d2
d𝑥2Γ(𝑥 = 0)

⟹

‖‖
‖‖
‖‖
‖‖
‖𝛼1 = −2
𝛼2 = 1

𝐴 = (1+ 𝛽1 +𝛽2)( 𝜔2𝜋)
2

(3.4)

To find 𝛽1, we use the same condition as in (2.5).

Ω(𝑓𝑠2 ) =
!
Γ(𝑓𝑠𝜎)

⟹ 𝛽1 =
𝜋2 −𝜈
𝜋2 +𝜈(𝛽2 + 1), 𝜈 ≔ √𝜔4 + 2𝜎2𝜔2(2𝜁2 − 1) +𝜎4

(3.5)

To solve the last unknown 𝛽2, we’ll use the frequency mapping function 𝜓 from
(2.9). We want the magnitude response at the frequency 𝜓(𝜔) to be equal to the
resonance 𝑄 ≔ 1/2𝜁.

(Ω ∘𝜓)(𝜔) =
! 1
2𝜁

⟹ 𝛽2 =
𝜋2 +𝜈−𝜋√2√𝜈+ 𝜅
𝜋2 +𝜈+𝜋√2√𝜈+ 𝜅

, 𝜅 ≔ 𝜔2(2𝜁2 − 1)+𝜎2
(3.6)
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3.2. FURTHER FILTER TYPES

Let

𝜈(𝑥,𝑦) = √𝑥4 + 2𝜎2𝑥2(2𝑦2 − 1) +𝜎4

𝜅(𝑥,𝑦) = 𝑥2(2𝑦2 − 1)+𝜎2

𝜑1(𝑥,𝑦) =
2𝜋2 − 2𝜈(𝑥,𝑦)

𝜋2 +𝜈(𝑥,𝑦) +𝜋√2√𝜈(𝑥,𝑦) + 𝜅(𝑥,𝑦)

𝜑2(𝑥,𝑦) =
𝜋2 +𝜈(𝑥,𝑦) −𝜋√2√𝜈(𝑥,𝑦) + 𝜅(𝑥,𝑦)
𝜋2 +𝜈(𝑥,𝑦) +𝜋√2√𝜈(𝑥,𝑦) + 𝜅(𝑥,𝑦)

(3.7)

Different second order filters can be created in the form

𝐻(𝑧) = 𝐺 ⋅ (1+ 𝛽1 +𝛽2)(
1+𝛼1𝑧−1 +𝛼2𝑧−2

1 + 𝛽1𝑧−1 +𝛽2𝑧−2
) (3.8)

with the following coefficients:

Table 3.1
Second order coefficients for various systems; with 𝜑 from Section 2.2.

𝜶𝟏 𝜶𝟐 𝜷𝟏 𝜷𝟐 𝑮

High Pass 𝜑(∞)+𝜑(∞) 𝜑(∞) ⋅ 𝜑(∞) 𝜑1(𝜔,𝜁) 𝜑2(𝜔,𝜁) 𝜔2

4𝜋2

Band Pass 𝜑(0) +𝜑(∞) 𝜑(0) ⋅ 𝜑(∞) 𝜑1(𝜔,𝜁) 𝜑2(𝜔,𝜁)
𝜔
2𝜋

2𝜁
1+𝜑(0)

Low Pass 𝜑(0) +𝜑(0) 𝜑(0) ⋅ 𝜑(0) 𝜑1(𝜔,𝜁) 𝜑2(𝜔,𝜁)
1

1 +𝛼1 +𝛼2

Band Stop 𝜑1(𝜔,0) 𝜑2(𝜔,0) 𝜑1(𝜔,𝜁) 𝜑2(𝜔,𝜁)
1

1 +𝛼1 +𝛼2

High Shelf 𝜑1(𝜔𝑔1/4, 𝜁) 𝜑2(𝜔𝑔1/4, 𝜁) 𝜑1(𝜔𝑔−1/4, 𝜁) 𝜑2(𝜔𝑔−1/4, 𝜁)
1

1 +𝛼1 +𝛼2

Low Shelf 𝜑1(𝜔𝑔−1/4, 𝜁) 𝜑2(𝜔𝑔−1/4, 𝜁) 𝜑1(𝜔𝑔1/4, 𝜁) 𝜑2(𝜔𝑔1/4, 𝜁)
𝑔

1+𝛼1 +𝛼2

Peaking 𝜑1(𝜔,𝜁𝑔1/2) 𝜑2(𝜔,𝜁𝑔1/2) 𝜑1(𝜔,𝜁𝑔−1/2) 𝜑2(𝜔,𝜁𝑔−1/2)
1

1 +𝛼1 +𝛼2

All Pass
𝜑1(𝜔,𝜁)
𝜑2(𝜔,𝜁)

𝜑2(𝜔,𝜁)−1 𝜑1(𝜔,𝜁) 𝜑2(𝜔,𝜁)
1

1 +𝛼1 +𝛼2
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𝜎 = 2 𝜎 = √2/3𝜋 analog

Figure 3.1. Different second order filters with 𝑓𝑐 = [1000; 3300; 10000; 20000; 40000]Hz,
𝑓𝑠 = 44100Hz, 𝑔 = 10dB, 𝜁 = √2/2.
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 𝜎 = 0 (All Pass) 𝜎 = 2 𝜎 = √2/3𝜋 analog

Figure 3.2. Different second order filters with 𝑓𝑐 = [1000; 3300; 10000; 20000; 40000]Hz,
𝑓𝑠 = 44100Hz, 𝑔 = 10dB, 𝜁 = 1/10.
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4. HIGHER ORDER FILTER

4.1. GENERAL FORM

From the fundamental theorem of algebra, it is known that every real
polynomial of order 𝑁 can be decomposed into linear and quadratic real factors.

∑
𝑁

𝑛=0
𝑎𝑛𝑠𝑛 = (𝑎0,0 +𝑎0,1𝑠)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

if 𝑁 odd

∏
⌊𝑁/2⌋

𝑛=1
∑
2

𝑚=0
𝑎𝑛,𝑚𝑠𝑚, 𝑎𝑛, 𝑎𝑛,𝑚 ∈ ℝ (4.1)

A first order s-plane polynomial can be mapped to the z-plane with

𝑎𝑠+ 1 1+ 𝑐𝑧−1

1 + 𝑐

𝑠 (1 − 𝑧−1) 𝜔2𝜋

(4.2)

where

𝑐 = {
𝜑(𝜔𝑎) 𝑎 ≥ 0,
𝜑(𝜔𝑎)−1 𝑎 ≤ 0. (4.3)

A second order s-plane polynomial, with real roots, is a product of two linear
factors and the mapping from (4.2) can then be applied. Otherwise, for complex
roots, we use the mapping

𝑎𝑠2 +𝑏𝑠+ 1 1+ 𝑐1𝑧−1 + 𝑐2𝑧−2

1 + 𝑐1 + 𝑐2
(4.4)

where

𝑐{1,2} =
{
{{{
{{{{𝜑1(𝑥,𝑦) ,𝜑2(𝑥,𝑦) } 𝑏 ≥ 0,

{𝜑1(𝑥,𝑦)𝜑2(𝑥,𝑦)−1,𝜑2(𝑥,𝑦)−1} 𝑏 ≤ 0.
(4.5)

and

𝑥 = 𝜔√𝑎, 𝑦 = 𝑏
2√𝑎

(4.6)

For the degenerative cases of when 𝑎 or 𝑎 and 𝑏 equal to 0, we assume

𝑏𝑠 + 1 = (𝑎𝑠 + 1)(𝑏𝑠 + 1)|𝑎=0
1 = (𝑎𝑠 + 1)(𝑎𝑠 + 1)|𝑎=0

(4.7)
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4.2. LADDER EXAMPLE

A fourth order low pass ladder filter with feedback coefficient 𝐾 has the
continuous transfer function

𝐻(𝑠) = 1+𝐾4

(1 + 𝑠)4 +𝐾4 (4.8)

Then, with

𝑎 = 0, 𝑎{1,2} =
1

√𝐾2 ±√2𝐾+ 1
, 𝑏{1,2} = 2±√2𝐾 (4.9)

it can be factorized and mapped as follow:

𝐻(𝑠) =
(
(𝑎𝑠+ 1

)
)
4

×
(
(∏

2

𝑛=1
(𝑎2𝑛𝑠2 +𝑎2𝑛𝑏𝑛𝑠 + 1)

)
)
−1

𝐻(𝑧) =
(
((((1+𝜑(𝜔𝑎)𝑧

−1

1 +𝜑(𝜔𝑎)
)
))))
4

×
(
((((∏

2

𝑛=1

1 +∑2𝑚=1𝜑𝑚(𝜔𝑎𝑛, 12𝑎𝑛𝑏𝑛)𝑧
−𝑚

1 +∑2𝑚=1𝜑𝑚(𝜔𝑎𝑛, 12𝑎𝑛𝑏𝑛) )
))))
−1

(4.10)

5. FINAL REMARKS

◾ For elementary systems like the low-, high-, and band-pass filter, i.e. when the
zeros of the continuous transfer function are equal to 0 or infinity, the zeros of
the discrete version are just constants.

◾ Freedom of optimization and matching preference is given via the 𝜎 constant.
Setting it to 0 improves a lot the computation of the coefficients, but at the cost
of cramping at Nyquist. For small 𝑓𝑐, that drawback is negligible.

◾ Frequency compensation from (2.10) can be used to obtain the same cutoff point
as in the analog system and to improve the matching over the whole frequency
spectrum.

◾ If the roots of a continuous system are on the right half of the s-plane, then at a
very specific cutoff frequency, 𝜑 and 𝜑2 can be equal to 0, implying a division
by 0 in (4.3) and (4.5).

◾ We notice in (3.7) that 𝜑1 and 𝜑2 are closely related to each other, sharing the
same denominator 𝑑. Interestingly enough, 1 +𝜑1 +𝜑2 can also be written as
4𝜋2/𝑑, which intuitively thinking, isn’t a coincidence and could be exploited.
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