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Abstract. A method for computing the coe2cients of a second order
digital biquadratic &lter is presented, matching as close as possible the
characteristics of the analogue prototype. By &nding the coe2cients of a
&rst order system, an information can be retrieved to solve the second
order system. A general form solution is obtained, where only elementary
functions are used and where the cuto5 frequency can tend to in&nity.

1. INTRODUCTION

When mapping from the analogue domain to the digital domain, traditional methods like the
bilinear transform are very popular due to their ease of directly replacing the variables. Unfortunately,
they su5er from bad matching at high cuto5 frequency and from cramping at Nyquist. Other methods
try to solve the magnitude matching and the cramping, but often involve system dependant computation
methods, complicated arithmetic and neglect the phase response. The goal of this paper is to come up
with a simple and accurate solution for any given system, and simple solutions always come from a
simple development. In Section 2.1, by knowing the location of the zeros of a discrete high pass &lter,
we can easily solve its &rst order form. In Section 3.1, we then do the same for its second order form
while using a precious information appearing in the &rst order solution. For &nding the coe2cients, only
systems of polynomial equations of degree not higher than two were used, resulting in elegant formulæ.
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2. FIRST ORDER FILTER
2.1. HIGH PASS

A &rst order analogue high pass &lter, with cuto5 frequency 𝑓�, has a magnitude response

Ω�(�) = 1
√(𝑓�� )2 +1 (2.1)

A digital bilinear &lter, with sampling frequency 𝑓�, has a discrete transfer function

�(�) = �0 +�1�−1
�0 +�1�−1 = � ⋅ 1+��−1

1+ ��−1 (2.2)
with a magnitude response

Ω�(�) = � ⋅ √√
√√√�2 +2�cos(2!�𝑓� ) + 1
�2 +2� cos(2!�𝑓� ) + 1 (2.3)

We introduce # ≔ 𝑓�/𝑓�. The &rst two conditions to match the analogue prototype are:

1. same gain at � = 0,
2. same slope at � = 0.

{{{{
{{{  d0d�0Ω�(� = 0) = d0d�0Ω�(� = 0)
  d1d�1Ω�(� = 0) = d1d�1Ω�(� = 0) ⟹ {{{{

{{{ � = −1
 � = (1+ �)( #2!) (2.4)

To &nd �, we want a gain match at 𝑓�/., with . being a constant.

Ω�(𝑓�2 ) = Ω�(𝑓�.)
⟹ � = !−1!+1, 1 ≔ √#2 +.2

(2.5)

2.2. FURTHER FILTER TYPES

Let

5(�) = !−√�2 +.2!+√�2 +.2 (2.6)
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with

lim�→05(�) = !−.!+.
lim�→∞5(�) = −1 (2.7)

Di5erent &rst order transfer functions can be created in the form

�(�) = = ⋅ (1+ �)(1+��−1
1+��−1) (2.8)

with the following coe2cients:

Table 2.1.
First order coe2cients for various systems.

� � =
High Pass 5(∞) 5(#) #2!
Low Pass 5(0) 5(#) 11 +�
High Shelf 5(#?1/2) 5(#?−1/2) 11 +�
Low Shelf 5(#?−1/2) 5(#?1/2) ?1 +�
All Pass 5(#)−1 5(#) 11 +�

The frequency mapping of �(�) is

@(#) = 𝑓�2! arccos(#2 −.2 −!2#2 −.2 +!2) (2.9)

As shown in Figure 2.1, the ideal magnitude response match is obtained when . ∈ [2,√2/3!].
This is the interval where @(#) intersects 𝑓�. On the other hand, the ideal phase response match is
obtained when . = 0. Since (2.9) causes a slight shift on the cuto5 frequency 𝑓�, it might be of interest
to revert that e5ect, either directly on # with

@−1(#) = 𝑓�√.2 +!2 ctg2(!/#) (2.10)

or on the constant . with

@−1(.) = √#2 −!2 ctg2(!/#) (2.11)
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Figure 2.1. Di5erent &rst order &lters with 𝑓� = [1000;3300; 10 000; 20 000; 40 000]Hz,𝑓� = 44 100Hz, ? = 10dB.
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3. SECOND ORDER FILTER
3.1. HIGH PASS

A second order analogue high pass &lter, with damping ratio P, has a magnitude response

Ω�(�) = 1
√(𝑓�� )4 + 2(𝑓�� )2(2P2 −1) + 1 (3.1)

A digital biquadratic &lter has a discrete transfer function

�(�) = �0 +�1�−1 +�2�−2
�0 +�1�−1 + �2�−2 = � ⋅ 1+�1�−1 +�2�−21+ �1�−1 + �2�−2 (3.2)

with a magnitude response

Ω�(�) = � ⋅ √√
√√√4�2 cos2(2!�𝑓� ) + 2�1(�2 + 1) cos(2!�𝑓� ) + �21 + (�2 −1)2
4�2 cos2(2!�𝑓� ) + 2�1 (�2 + 1) cos(2!�𝑓� ) + �21 + (�2 −1)2 (3.3)

We want the gain, slope and concavity to match the analogue prototype at � = 0, giving us the
system of equations

{{{{{{
{{{
{{{{{{{{  d

0d�0Ω�(� = 0) = d0d�0Ω�(� = 0)
  d1d�1Ω�(� = 0) = d1d�1Ω�(� = 0)
  d2d�2Ω�(� = 0) = d2d�2Ω�(� = 0)

⟹
{{{{{
{{
{{{{{{ �1 = −2
 �2 = 1
 � = (1+ �1 +�2)( #2!)2

(3.4)

To &nd �1, we use the same condition as in (2.5).

Ω�(𝑓�2 ) = Ω�(𝑓�.)
⟹ �1 = !2 −1!2 +1 ⋅ (1 + �2), 1 ≔ √#4 +2.2#2(2P2 − 1) +.4

(3.5)

To solve the last unknown �2, we’ll use the frequency mapping function @ from (2.9). We want the
magnitude response at the frequency @(#) to be equal to the resonance S ≔ 1/2P.

(Ω� ∘@)(#) = 12P
⟹ �2 = !2 +1−!√2√1+U!2 +1+!√2√1+U, U ≔ #2(2P2 − 1)+.2 (3.6)
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3.2. FURTHER FILTER TYPES

Let

1(�,V) = √�4 + 2.2�2(2V2 − 1) +.4
U(�,V) = �2(2V2 − 1)+.2

51(�,V) = 2!2 − 21(�,V)!2 +1(�,V) +!√2√1(�,V) + U(�,V)
52(�,V) = !2 +1(�,V) −!√2√1(�,V) + U(�,V)!2 +1(�,V) +!√2√1(�,V) + U(�,V)

(3.7)

Di5erent second order transfer functions can be created in the form

�(�) = = ⋅ (1+�1 +�2)(1 +�1�−1 +�2�−21 +�1�−1 +�2�−2) (3.8)

with the following coe2cients:

Table 3.1.
Second order coe2cients for various systems; with 5(�) from Section 2.2.

�1 �2 �1 �2 =
High Pass 5(∞)+5(∞) 5(∞) ⋅ 5(∞) 51(#,P) 52(#,P) #24!2
Band Pass 5(0)+5(∞) 5(0) ⋅ 5(∞) 51(#,P) 52(#,P) #2! 2P2+�1
Low Pass 5(0)+5(0) 5(0) ⋅ 5(0) 51(#,P) 52(#,P) 11 +�1 +�2
Band Stop 51(#, 0) 52(#,0) 51(#,P) 52(#,P) 11 +�1 +�2
High Shelf 51(#?1/4, P) 52(#?1/4, P) 51(#?−1/4, P) 52(#?−1/4, P) 11 +�1 +�2
Low Shelf 51(#?−1/4, P) 52(#?−1/4, P) 51(#?1/4, P) 52(#?1/4, P) ?1 +�1 +�2
Peaking 51(#,P?1/2) 52(#,P?1/2) 51(#,P?−1/2) 52(#,P?−1/2) 11 +�1 +�2
All Pass

51(#,P)52(#,P) 152(#,P) 51(#,P) 52(#,P) 11 +�1 +�2

For the band stop case, at the expense of losing the minimum phase property for # < ., the
feed forward coe2cients �1 and �2 can be simpli&ed to

�1 = −2 ⋅ #2 −.2 −!2#2 −.2 +!2 , �2 = 1 (3.9)
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Figure 3.2. Di5erent second order &lters with 𝑓� = [1000; 3300;10 000; 20 000; 40 000]Hz,𝑓� = 44 100Hz, ? = 10dB, P = √2/2.
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Figure 3.3. Di5erent second order &lters with 𝑓� = [1000; 3300; 10 000; 20 000; 40 000]Hz,𝑓� = 44 100Hz, ? = 10dB, P = 1/10.
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4. HIGHER ORDER FILTER
4.1. GENERAL FORM

From the fundamental theorem of algebra, it is known that every real polynomial of order Z can
be decomposed into linear and quadratic real factors.

∑Z\=0�\�\ = (�0,0 +�0,1�)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
if Z odd

⋅ ∏⌊Z/2⌋
\=1 ∑2e=0�\,e�e, �\, �\,e ∈ ℝ (4.1)

A &rst order s-plane polynomial can be mapped to the z-plane with

��+ 1 1 + ��−11+ �
� (1 − �−1) ⋅ #2!

(4.2)

where

� = {{
{ 5(#�) for � ⩾ 0,
 5(#�)−1 for � ⩽ 0. (4.3)

A second order s-plane polynomial, with real roots, is a product of two linear factors and the
mapping from (4.2) can then be applied. Otherwise, for complex roots, we use the mapping

��2 +��+ 1 1+ �1�−1 +�2�−21+ �1 +�2 (4.4)
where

�{1,2} =
{{{{{
{{{{ {51(�,V) ,52(�,V) } for � ⩾ 0,
 {51(�,V)52(�,V)−1,52(�,V)−1} for � ⩽ 0. (4.5)

and

� = #√�, V = �2√� (4.6)

For the degenerative cases of when � or � and � equal to 0, we assume

�� + 1 = (�� + 1)(�� + 1)|�=0, 1 = (�� + 1)(�� + 1)|�=0 (4.7)
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4.2. FOUR POLE EXAMPLE

A four pole closed loop low pass &lter with feedback coe2cient n has the continuous transfer
function

�(�) = 1+n4(1 + �)4 +n4 (4.8)
Then, with

� = 0, �{1,2} = 1√n2 ±√2n+ 1, �{1,2} = 2± √2n (4.9)

it can be factored and mapped as follow:

�(�) = ((��+ 1))
4 × ((∏2\=1(�2\�2 +�2\�\� + 1)))

−1

�(�) = ((((
(1 +5(#�)�−11 +5(#�) ))))

)4 × ((((
(∏2\=1

1+∑2e=1 5e(#�\, 12�\�\)�−e
1+∑2e=1 5e(#�\, 12�\�\) ))))

)−1
(4.10)

5. FINAL REMARKS

– For elementary systems like the low, high, and band pass &lter, i.e., when the zeros of the continuous
transfer function are equal to 0 or ±∞, the zeros of the discrete version are just constants.

– Freedom of optimization and matching preference is given via the . constant. Setting it to 0 improves
a lot the computation of the coe2cients, but at the cost of cramping at Nyquist. For small 𝑓�, that
drawback is negligible.

– Frequency compensation from (2.10) or (2.11) can be used to obtain the same cuto5 frequency as in
the analogue system and to improve the matching over the whole frequency spectrum.

– If the roots of a continuous system are on the right half of the s-plane, then at a very speci&c cuto5
frequency, 5 and 52 can be equal to 0, implying a division by 0 in (4.3) and (4.5).

– We notice in (3.7) that 51 and 52 are closely related to each other, sharing the same denominator y.
Interestingly enough, 1+51 +52 can also be written as 4!2/y, which intuitively thinking, isn’t a
coincidence and can be exploited.
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