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Abstract. The time variant behaviour of a linear discrete system is stud.
ied, using the state space representation. By observing the 0ow of energy
inside the capacitor of an analog �lter, a �rst and second order system
are brought into optimised time variant and time invariant recursive
stable structures. The transformation of a continuous state space into its
discrete form is then presented, with the eigenspaces playing the key role.

1. INTRODUCTION

Once the transfer function of a linear digital system is obtained, it is of interest, for realtime
simulations, to make use of it. For recursive �lters, there exists, however, an in�nite amount of di6erent
structures. Some of them are simpler to implement, faster to execute, or more robust regarding numerical
stability. Therefore, when solving problems, it is important to start with its simplest version possible;
gather all the information, solve, and continue with its higher order form. In Section 3, the recursive
structure is brought into the state space form and a direct relationship with the analog RC circuit is found.
Stability is then studied in Section 4, focused more particularly on time variant systems. From there, we
discretise a continuous state space that is known to be stable. Moreover, we methodically expand this
derived form into something modular, without altering its frequency response. Finally, thanks to the
coe=cients in [1], all the structures presented here can be used by any �lter type, with very fast execution.
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2. DIRECT FORM

A linear time invariant system can be characterised by its transfer function 𝐻(�), the latter being
the direct relation between the input � and the output �.

� �𝐻(�) (2.1)
This means, given a vector x, we can predict the vector y simply by looking at 𝐻(�), or, more precisely, at
its poles and zeros. We refer to this property as determinacy; one of the mainstay of ordinary di6erential
equations. However, for realtime causal systems, the input vector comes sample by sample. Therefore, in
order to bring a discrete transfer function into a such con�guration, there exists a simple and intuitive
transformation, as shown in Table 2.1, using the low pass structure from [1]¹:

Table 2.1.
Direct Form I mapping of a �rst and second order transfer function.

First order Second order
𝐻(�) 1 + �1 + � ⋅ 1 + ��−11 + ��−1 1 + �1 + �21 + �1 + �2 ⋅ 1 + �1�−1 + �2�−21 + �1�−1 + �2�−2
y� 1 + �1 + � ⋅ (x� + �x�−1) − �y�−1 1 + �1 + �21 + �1 + �2 ⋅ (x� + �1x�−1 + �2x�−2) − �1y�−1 − �2y�−2

The pattern is apparent. Each �−� acts as a state from the past, also known as delay element. The
literature calls this recursive sequence Direct Form I. Although being a mathematically correct model in
an ideal world, it holds some weaknesses in the real world. These are, for a system of order  :

1. Optimum number of states:
– 2  states.

2. Optimum number of elementary arithmetic operators:
– 2  additions.
– 2 + 1 multiplications.

3. Numerical instability for low cut systems with a very small cuto6 frequency.
4. Instability for  > 1 for time varying coe=cients.

Direct Form I. Direct Form II.

� + �−
�−1 �−1� �1 + �1 + �

�− + �
�−1� � 1 + �1 + �

Figure 2.1. Structures directly derived from the transfer function 𝐻(�).

With a simple algebraic manipulation, we can halve the number of states and turn the Direct
Form I into the Direct Form II, as shown in Figure 2.1. We have solved point 1, but aggravated point 3.
Therefore, simple and random attempts are not the keys to solve the problem.

¹This paper will mostly use the coe=cients from [1], but the reasoning will not be limited to these. Any variable
not de�ned here is de�ned in [1].
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3. STATE SPACE
3.1. DEFINITION

A linear system of order   in the state space representation has the general form

y� = A�x� + B�z�z�+1 = C�x� + D�z� (3.1)

The   dimensional real vector z� is composed of a minimum set of states that uniquely describe a
system, given its state matrices. These are {A, B, C, D}�, containing the coe=cients of the system with

A� ∈ ℝ1×1, B� ∈ ℝ1× , C� ∈ ℝ ×1, D� ∈ ℝ × (3.2)
The transfer function is

𝐻 (�) = A + B ⋅ (� − D)−1C (3.3)
Alternatively, for a �rst and second order system, with tr ⋅  and det ⋅  denoting the trace and determinant
of a matrix, respectively, we get the convenient form

𝐻1(�) = A ⋅ 1 + (BCA−1 − tr D)�−1
1 − tr D �−1

𝐻2(�) = A ⋅ 1 + (BCA−1 − tr D)�−1 + (B ⋅ (I − D)−1C − BCA−1 + det D)�−2
1 − tr D �−1 + det D �−2

(3.4)

If we ignore the pole independent scalar 3−1 = 1 + � from our �rst order transfer function and
solve the equation in the state space, we get

𝐻1(�) = (1 + �) ⋅ 1 + ��−11 + ��−1 ⟹
{{{{{
{{
{{{{ A = 1 + �

 D = −�
 BC = (1 + �)(� − �)

(3.5)

The set of solutions is in�nite. Since, unlike the output matrix B, the input matrix C is directly related
to the evolution of the states, it is important to understand its meaning. Apart from having a useful
property for controllability in control theory, it is actually directly linked to the passive elements of an
electronic circuit.

3.2. ANALOGUE ANALOGY

A �rst order analogue �lter is made of a resistance : and a capacitance ;. The transfer function𝐻(�) depends of these two elements, which can be combined into the complex impedance < = : + =/;.
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With a cuto6 period of 2?:;, it is of interest, for time variant systems, to know which one between the
real and imaginary part of < is varying. Indeed, based on this dilemma, the circuit shall react di6erently.

Time invariant impedance. Time variant resistor. Time variant capacitor.

Figure 3.1. Analogue �lter with di6erent time behaviours.

Physically speaking, the state z� can be compared to the electric charges @A stored on the
conductors of a capacitor. These charges converge to the product of the capacitance ; and the voltage B
between the conductors. By assigning B to the input �, we can emulate the charging in the state space.

@A →→→A→∞ B ⋅ ;
z� →→→→�→∞ B ⋅ (I − D)−1C (3.6)

We see that a constant imaginary impedance implies a constant matrix (I − D)−1C. On the other hand,
a constant real impedance implies a constant matrix C. If we normalise these constants to 1 and de�neQ ≔ (I − D)−1C as the charge matrix, the state space can be completed for both time variant cases.

ℑL{<} = 1 ⟹ Q = 1 ⟹ {{
{ B = � − �

 C = 1 + �
ℜN{<} = 1 ⟹ C = 1 ⟹ {{{

{{ B = (� − �)(1 + �)
 C = 1

(3.7)

It appears that the Direct Form II in Figure  2.1 also simulates a circuit with a time varying
imaginary impedance. Whether such behaviour is desired is an artistic or engineering preference. Never.
theless, instead of evaluating the state z� and output y� according to (3.1), it is possible to simplify the
process with

PℑL = (1 + �)(x� − z�), PℜN = x� − (1 + �) ⋅ z� (3.8)
as shown in the following tables:

Table 3.1.
State space update with ℑL{<} = 1.

y� z�+1
High Pass 3 ⋅ PℑL z� + PℑL
Other 3 ⋅ PℑL + z� z� + PℑL

Table 3.2.
State space update with ℜN{<} = 1.

y� z�+1
High Pass (1 + �)(3 ⋅ PℜN) z� + PℜN
Other (1 + �)(3 ⋅ PℜN + z�) z� + PℜN
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High Pass. Other.

�−
+

�

�−1
1 + � R2?

�−
+

+ �

�−1
1 + � 11 + �

Figure 3.2. Optimised state space update with ℑL{<} = 1.

With a constant imaginary impedance, comparing against the Direct Form I, we have created a
structure where we have minimised the number of states, bounded the norm of the state vector z� below
the norm of the input vector x� and traded one multiplication for one addition.

3.3. SECOND ORDER

Solving for the second order system, we get

𝐻2(�) = (1 + �1 + �2) ⋅ 1 + �1�−1 + �2�−21 + �1�−1 + �2�−2

⟹
{{{{{
{{
{{{{ A = 1 + �1 + �2 tr D = −�1 det D = �2

⟹ {{{
{{ BC = (1 + �1 + �2)(�1 − �1)

 BQ = �1 + �2 − �1 − �2
(3.9)

We see that, where, in the �rst order case, we had only one degree of freedom, here, we have
four of them. Nonetheless, we will attempt to �nd a solution by emphasising simplicity. Let us restrict
the entries of the state matrices over the additive group ({1, �1, �2, �1, �2}, +), allowing only additions
and subtractions as arithmetic operators. This implies, for the charge matrix Q , to be restricted over the
set {0, 1}, excluding the null matrix. With an order  = 2, we have 2 − 1 = 3 unique permutations:

Q1 = ‖10‖, Q2 = ‖01‖, Q3 = ‖11‖ (3.10)
For the input matrix C, a restriction over the set {0, 1 + �1 + �2} is implied, giving us the combination
pairs

C1 = ‖ 01 + �1 + �2‖ ≡ Q1

C2 = ‖1 + �1 + �21 + �1 + �2‖ ≡ Q2

C3 = ‖1 + �1 + �20 ‖ ≡ Q3

(3.11)

After solving the state space for the di6erent cases and ignoring all kind of symmetric forms,
we get three complete systems, shown in Table 3.3.
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Table 3.3.
Di6erent second order state space systems.

A B C D
System 1 ‖1 + �1 + �2‖ ‖�1 + �2 − �1 − �2�1 − �1 ‖T ‖ 01 + �1 + �2‖ ‖ 1−1 − �1 − �2

1−1 − �1‖
System 2 ‖1 + �1 + �2‖ ‖ �2 − �2�1 + �2 − �1 − �2‖T ‖1 + �1 + �21 + �1 + �2‖ ‖�2�2

−1 − �1 − �2−�1 − �2 ‖
System 3 ‖1 + �1 + �2‖ ‖�1 − �1�2 − �2‖T ‖1 + �1 + �20 ‖ ‖−�11 −�20 ‖

Interestingly, System 3 shares the same eigenspaces as the second order Direct Form II; but
instead of having constant real impedances, it has constant imaginary impedances. Furthermore, seem.
ingly, System 2 is an extension of our optimised �rst order structure. Indeed, with

P = (1 + �1 + �2)(x� − z1|�) + �2z2|� (3.12)
we can simplify the state space update as follow:

Table 3.4.
State space update for System 2.

y�+1 z1|�+1 z2|�+1
Low Cut 3 ⋅ (P − �2z2|�) z1|� + P P
Other 3 ⋅ (P − �2z2|�) + z1|� z1|� + P P

Low cut will refer to any system with a discrete transfer function having at least one zero at� = 1; i.e., a high pass or band pass �lter. We clearly see the similarities between Figure 3.2 and Figure 3.3;
they obey the natural beauteous symmetry and share the same number of arithmetic operators: 2 + 1
additions and 2  multiplications.

High Pass. Other.

�−
+

�−+

�−1
1 + �1 + �2 R24?2

�−1

�2
�−

+
�−+ +

�−1
1 + �1 + �2 11 + �1 + �2

�−1

�2 �2

Figure 3.3. Optimised state space update for System 2.

Unfortunately, none of the systems from Table 3.3 are stable under modulation. Thus, some
information is missing and more is to explore.
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4. STABILITY
4.1. DEFINITIONS

Let ‖⋅‖\ be the matrix norm induced by the vector norm ‖⋅‖\ on ℝ  over ℝ+.

Definition 1.  A system is stable if a �nite input � produces a �nite output �.

‖x�‖∞ < ∞ ⟹ ‖y�‖∞ < ∞, ∀� ∈ ℝ
Let ` be a linear system de�ned as in (3.1) with ` ∈ {A, B, C, D, x, y, z}� and � ∈ ℕ.

Lemma 1.  The output vector y� is �nite if the matrices A� and B�, as well as the vector z�, are �nite.

Proof. 

‖y�‖∞ = ‖A�x� + B�z�‖∞ ⩽ ‖A�‖∞⏟⏟⏟
<∞

‖x�‖∞⏟⏟⏟
<∞

+ ‖B�‖∞⏟⏟⏟
<∞

‖z�‖∞⏟⏟⏟
<∞

□

The condition for stability is mostly about the state vector z�. Since z�+1 is a recursive sequence,
all we have to do is to show that it’s de�ned everywhere and that it doesn’t diverge.

Lemma 2.  The sequence z�+1 is de�ned for all � if the matrices C� and D� are �nite.

Proof. 

‖z�+1‖∞ = ‖C�x� + D�z�‖∞ ⩽ ‖C�‖∞⏟⏟⏟
<∞

‖x�‖∞⏟⏟⏟
<∞

+ ‖D�‖∞⏟⏟⏟
<∞

‖z�‖∞⏟⏟⏟
<∞

□

Lemma 3.  The sequence z�+1 converges if the product of the matrices D0, D1, …, D�−1, D� converges to
the null matrix.

Proof.  Expending z�+1 and taking its limit, we get

lim�→∞ z�+1 = lim�→∞(((∏�
==0 D= ⋅ z0 + ∑�==0 ∏�−=

o=1 Do ⋅ C=x=))) = ∏∞==1 D= ⋅ ((D0z0 + ∑∞==0 C=x=))

which converges if there is absorption by 0. □
Hence, by implication of Lemmata 1.2.3, we get the following theorem:

Theorem 1.  A system ̀  is stable if the matrices A�, B� and C� are �nite and if the product of the matricesD0, D1, …, D�−1, D� converges to the null matrix.

Let us now assume that all the state matrices of the system ̀  are �nite. We can then give su=cient
conditions on stability for the time variant and time invariant cases.

Proposition 1.  A time invariant system ` is stable if the spectral radius of the matrix D is less than 1.

Proof.  If s(D) < 1 and � → ∞, then s(D�) = s(D)� → 0. It follows that D� is nilpotent, thus D� = 0. □
7



For the time variant case, prudence is advised. Indeed, we can have a diverging productD0D1 ⋯ D�−1; but with D� = 0, mathematically, the system is still stable. Yet, in the real world, the
amount of energy accumulated inside a capacitor would break it. Or the state vector z� could no longer be
representable given some limited memory. Therefore, the best way to �ght an enemy is to not have one.

Proposition 2.  A time variant system ` is stable if the spectral norm of the matrix D� is less than 1.

Proof.  Clearly, given any matrix norm ‖·‖\ < 1,

∏ ‖D�‖\ ⟹ ∏ D� → 0
Since ‖D�‖22 = s(D�DT�) ⩽ ‖D�DT�‖\, the lower bound to the matrix norm is given for \ = 2. □

Nevertheless, stable systems with a spectral norm equal to 1 can fe found. This special case tells
us that there exists a non null vector z, such that ‖D�z‖2 = ‖z‖2; in other words, the transformation
preserves the magnitude of the vector. The question is, however, if ‖D�D�+1 ⋯ z‖2 < ‖z‖2. We could, of
course, sequentially compute the matrix product and see if the spectral norm is less than 1, but it would
be much easier to prove it by exhaustion instead.

Example 1.  Let there be given a real vector z = ‖wx‖ with w ≠ 0 and x ≠ 0. Then, the only way to apply
a transformation that preserves the magnitude is by rotation. A characteristic of such a matrix is a
determinant equal to 1.

Example 2.  Let us take the same vector z, but with x = 0 instead. We have a case where the 2.dimensional
vector z lies in the span of the set z2 = {‖10‖, ‖01‖}, but also in the span of the set z1 = {‖10‖}. If we
prohibit rotation, then a magnitude preserving transformation on the vector z can be done by shifting.
If the order of the shift gets reversed by a cycle, oscillation might happen. For instance, let us choose

M1 = ‖01 00‖, M2 = ‖00 10‖
Then the entries of the vector z can be shifted up and down in a cyclic manner:

M1z = ‖0w‖, M2M1z = ‖w0‖, M1M2M1z = ‖0w‖, …
Instead of trying to identify a cyclic shift, it would be simpler to not allow it in the �rst place. In

fact, that combinatorial phenomenon is not present in analog �lters. A su=cient condition for it not to
occur is to have all non diagonal entries of a matrix not equal to ±1.

From exhaustion, the �nal proposition is obtained:

Proposition 3.  The following holds:

{{{{{
{{
{{{{ ‖D�‖2 = 1

 det(D�) ≠ 1 (no rotation)
 max=,o|D�|=o| ≠ 1 (no shift)

⟹ ∏ D� → 0
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4.2. STATE VARIABLE FORM

There exists an in�nite amount of stable time variant second order structures. Therefore, in
order to start from somewhere, we shall take inspiration from simple continuous forms that are known
to be stable. Indeed, such a system can be characterised by the following continuous transition matrixDA and charge matrix Q :

DA = ‖ 0−1 1−2�‖ ⋅ 2?��, Q = ‖10‖ (4.1)
The literature calls this structure State Variable Form. We recall that the convergence of the time variant
transition matrix is not only about its eigenvalues, but also about its eigenvectors. To discretise DA, we
simply eigen decompose it, transform its eigenvalues, and recompose back.

DA = VAΛAV−1A ⟹ D� = VATr{ΛA}V−1A = VAΛ�V−1A (4.2)
In fact, with

VA = ‖‖‖‖
‖‖ 1−� + √�2 − 1 1−� − √�2 − 1‖‖‖‖

‖‖, Λ� = 12 ⋅ ‖‖‖‖
‖‖−�1 + √�21 − 4�20

0
−�1 − √�21 − 4�2‖‖‖‖

‖‖ (4.3)

the discrete state space can be sequentially solved in the following way:

D� = VAΛ�V−1A ⟹ C� = (I − D�)Q ⟹ B� = ‖(1 + �1 + �2)(�1 − �1)�1 + �2 − �1 − �2 ‖T ⋅ ‖CT�QT‖−1 (4.4)

Alternatively, we can substitute VA in terms of elements of the set {1, �1, �2}. Depending on
the eigenvalue mapping method, this might be tedious. Nevertheless, there is no requirement to exactly
match VA, as shown in Figure 5.1. Indeed, let us assume � = 0. This gives us

� = √� + �√2√� (4.5)

Then, with � ≔ √�/?, the following elegant state space can be obtained:

{{{{{
{{{{{{{
{{{{{{{
{{
{{{{{{{
{{{{{{{
{{{{{{ A = ‖1 + �1 + �2‖

B = ‖1 + �1 + �2‖ ⋅ ‖−1−�‖T + ‖1 + �1 + �21 − �1 + �2‖T ⋅ ‖10 0�−1‖
C = ‖1 + �1 + �2‖ ⋅ ‖ 1−�‖ ⋅ 12
D = ‖1 + �1 + �2‖ ⋅ ‖ 1−�‖ ⋅ 12 ⋅ ‖−1−�‖T + ‖10 0−1‖

(4.6)
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Furthermore, with

P = (1 + �1 + �2)(� − z1|� − �z2|�) (4.7)
the system can be updated as shown in Table 4.1:

Table 4.1.
Optimised state space update of the state variable form.

y� z1|�+1 z2|�+1
Low Cut 3 ⋅ (P + 1 − �1 + �2� ⋅ z2|�) z1|� + P2 −z2|� − � ⋅ P2
Other 3 ⋅ (P + 1 − �1 + �2� ⋅ z2|�) + z1|� z1|� + P2 −z2|� − � ⋅ P2

4.3. EIGENMORPH FORM

By neatly manipulating the eigenvector matrix VA and the charge matrix Q , we can get, with � ∈ ℝ,

VA = ‖‖‖‖
‖‖ 1−� + √�2 − 1 − � 1−� − √�2 − 1 − �‖‖‖‖

‖‖, Q = ‖ 1−�‖ (4.8)

This form is then stable for time varying coe=cients when � ∈ [0, 2√�+�√2√� ] ≅ [0, 2�]. The interesting part,
however, is that it nicely extends the state space of the state variable form in (4.6). At the expense of three
more additions and one multiplication, we can have a modular structure that maintains its frequency
response.

{{{{{
{{{{{{{
{{{{{{{
{{
{{{{{{{
{{{{{{{
{{{{{{ A = ‖1 + �1 + �2‖

B = ‖1 + �1 + �2‖ ⋅ ‖−�� − 1−� ‖T + ‖1 + �1 + �21 − �1 + �2‖T ⋅ ‖10 ��−1�−1 ‖
C = ‖1 + �1 + �2‖ ⋅ ‖ 1−� − �‖ ⋅ 12
D = ‖1 + �1 + �2‖ ⋅ ‖ 1−� − �‖ ⋅ 12 ⋅ ‖−�� − 1−� ‖T + ‖ 1−2� 0−1‖

(4.9)

Furthermore, with

P = (1 + �1 + �2)(� − z1 − �(�z1|� + z2|�)) (4.10)
The system can be updated as shown in Table 4.2:
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Table 4.2.
Optimised state space update of the eigenmorph form.

y� z1|�+1 z2|�+1
Low Cut 3 ⋅ (P + (1 − �1 + �2)(�z1|� + z2|�)� ) z1|� + P2 −z2|� − (� + �) ⋅ P2 − 2�z1|�

Other 3 ⋅ (P + (1 − �1 + �2)(�z1|� + z2|�)� ) + z1|� z1|� + P2 −z2|� − (� + �) ⋅ P2 − 2�z1|�

We shall, of course, appreciate the simplicity and symmetry in Figure 4.1 and Figure 4.2. We also
note that some gain blocks can be simpli�ed. For instance

1 + �1 + �2 = 4?2
?2 + � + ?√2√� + � (4.11)

High Pass. Other.
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Figure 4.1. Optimised state variable form.
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Figure 4.2. Optimised eigenmorph form.
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4.4. NORMAL FORM

Normal matrices are of a great use in mathematics, due to their symmetric property. It has an
orthonormal basis of eigenvectors. In other words, for a second order system, the states are perfectly 90°
phase shifted, guaranteeing stability; unlike the Direct Form, whose states are phase shifted by 1 sample,
as shown in Figure 5.2. Indeed, with

Q = ‖11‖ (4.12)
the state space can directly be built from the eigenvalues �1 and �2:

{{{{{
{{{{{{{
{{{{{{{
{{
{{{{{{{
{{{{{{{
{{{{{{ A = ‖(�1 − 1)(�2 − 1)‖

B = ‖(�1 − 1)(�2 − 1)‖ ⋅ ‖(�21 + �1�1 + �2)(1 − �2)(�22 + �2�1 + �2)(�1 − 1)‖
T

C = ‖1 − �11 − �2‖
D = ‖�1 − 10 0�2 − 1‖ + ‖10 01‖

(4.13)
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Figure 5.2. State evolution of various structures. On the left, the cause of potential instability; humps.�� = 2000Hz, �� = 44 100Hz, � = 1/10, � = √2/3?, z0 = ‖1 1‖T.
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